レポートを読む:AI時代にCIOとCEOの連携を実現する方法

閉める
閉める
明日に向けたネットワーク
明日に向けたネットワーク
サポートするアプリケーションとユーザー向けに設計された、より高速で、より安全で、回復力のあるネットワークへの道を計画します。
Netskopeを体験しませんか?
Netskopeプラットフォームを実際に体験する
Netskope Oneのシングルクラウドプラットフォームを直接体験するチャンスです。自分のペースで進められるハンズオンラボにサインアップしたり、毎月のライブ製品デモに参加したり、Netskope Private Accessの無料試乗に参加したり、インストラクター主導のライブワークショップに参加したりできます。
SSEのリーダー。 現在、シングルベンダーSASEのリーダーです。
Netskope は、 SSE プラットフォームと SASE プラットフォームの両方で、ビジョンで最も優れたリーダーとして認められています
2X ガートナーマジック クアドラント SASE プラットフォームのリーダー
旅のために構築された 1 つの統合プラットフォーム
ダミーのためのジェネレーティブAIの保護
ダミーのためのジェネレーティブAIの保護
ジェネレーティブ AI の革新的な可能性と堅牢なデータ セキュリティ プラクティスのバランスを取る方法をご覧ください。
ダミーのための最新のデータ損失防止(DLP)eBook
最新の情報漏えい対策(DLP)for Dummies
クラウド配信型 DLP に移行するためのヒントとコツをご紹介します。
SASEダミーのための最新のSD-WAN ブック
SASEダミーのための最新のSD-WAN
遊ぶのをやめる ネットワークアーキテクチャに追いつく
リスクがどこにあるかを理解する
Advanced Analytics は、セキュリティ運用チームがデータ主導のインサイトを適用してより優れたポリシーを実装する方法を変革します。 Advanced Analyticsを使用すると、傾向を特定し、懸念事項に的を絞って、データを使用してアクションを実行できます。
Netskopeテクニカルサポート
Netskopeテクニカルサポート
クラウドセキュリティ、ネットワーキング、仮想化、コンテンツ配信、ソフトウェア開発など、多様なバックグラウンドを持つ全世界にいる有資格のサポートエンジニアが、タイムリーで質の高い技術支援を行っています。
Netskopeの動画
Netskopeトレーニング
Netskopeのトレーニングは、クラウドセキュリティのエキスパートになるためのステップアップに活用できます。Netskopeは、お客様のデジタルトランスフォーメーションの取り組みにおける安全確保、そしてクラウド、Web、プライベートアプリケーションを最大限に活用するためのお手伝いをいたします。

Proactive App Connector Monitoring with Machine Learning

Oct 17 2024

Introduction

App connectors are a critical component of the Netskope secure access service edge (SASE) platform, offering visibility into user activities based on their interactions with cloud applications. These connectors monitor various types of user actions, such as uploads, downloads, and sharing events in apps like Google Drive and Box, by analyzing network traffic patterns. With this visibility, security administrators can then configure and enforce real-time policies to prevent malware, data theft and exfiltration.

However, app connectors may occasionally fail to detect certain activities due to factors such as app updates or network disruptions. To mitigate the impact of these issues for our customers, it’s essential to proactively detect the changes in the app behavior and alert our engineers when adjustments to the connectors may be needed. The main challenge lies in distinguishing actual app connector failures from normal fluctuations in network traffic. To address this, we’ve developed a patent-pending app activity monitoring system that leverages advanced machine learning algorithms to automatically identify significant anomalies in app event counts. This system has been fine-tuned to flag issues early, while minimizing false alerts, ensuring efficient and accurate detection of potential app connector problems.

Time series data

Hourly event counts from the app connector are collected via the data pipeline and grouped by data center, tenant, application, and activity type. No personally identifiable information (PII) is captured in this process. The time series data undergoes further aggregation, cleaning, and enrichment during feature engineering. Additional features, such as time of day, day of the week, and country-specific holiday calendars, are incorporated to account for expected fluctuations in app event counts.

Our approach

Prediction model-based time series anomaly detection is a widely used technique for identifying anomalous points in a time series by comparing the forecasted values with the actual observed values, as illustrated in Figure 1. However, maintaining forecasting models for each individual univariate time series (e.g., for each data center, app, or activity type) can be cumbersome. Additionally, univariate models fail to capture the relationships between different time series. For example, if an event count for a specific app drops simultaneously across multiple data centers, it’s more indicative of an app connector issue than a localized network problem.

Moreover, multivariate autoregressive models have also proven to be unsuitable due to the large number of parameters that need to be learned, making the model training process infeasible.

Figure 1: Sample anomalous dip in the time series data.

We selected the Transformer-based architecture to address the challenges of modeling multivariate time series in a unified model. Specifically, we chose the Temporal Fusion Transformer (TFT) model, which is a variation of the Transformer that supports multi-horizon, multivariate forecasting and provides interpretability through its multi-head attention mechanism. This model uses static variables (like event names) and time-varying features (like holidays), along with autoregressive lag values, to make predictions.

During the training and tuning of our anomaly detection engine, several parameters are learned in addition to the TFT model’s hyperparameters. These include the length of data history required for training, a winsorizing function, a threshold for identifying significant dips, a dip-smoothing function, and the creation of variables for unaccounted holidays or global effects (e.g., network disruptions).

The goal of tuning the anomaly detection engine is to accurately detect anomalous dips caused by app connector failures as quickly as possible, while minimizing false alarms that could lead to unnecessary investigations or wasted resources. Our aim was to balance detection accuracy, early detection, and avoiding unnecessary alerts.

Put it in action

We have successfully deployed the anomaly detection engine, powered by the TFT model, to proactively monitor the health of the App Connectors. When the engine identifies anomalous dips in app event counts, it sends email alerts with key details such as: 

  • Time of detection
  • Severity of the issue
  • Visualizations showing shifts in app event counts

These alerts enable analysts to prioritize investigations and determine whether specific App Connectors require fixes. Figure 2 illustrates a common workflow. Over the past few months, this anomaly detection system has successfully identified several App Connector failures that other mechanisms missed.

Figure 2: Sample common workflow.

The authors wish to thank Netskope’s app connector engineering team for their collaboration. We continue to work closely to enhance the accuracy and usability of the app activity monitoring system.

author image
Yihua Liao
Dr. Yihua Liao is the Head of AI Labs at Netskope. His team develops cutting-edge AI/ML technology to tackle many challenging problems in cloud security.
Dr. Yihua Liao is the Head of AI Labs at Netskope. His team develops cutting-edge AI/ML technology to tackle many challenging problems in cloud security.
author image
Kaukab Syed
Kaukab Enayet Syed is a Senior Staff Machine Learning Scientist at Netskope, based in Bangalore, India.
Kaukab Enayet Syed is a Senior Staff Machine Learning Scientist at Netskope, based in Bangalore, India.
Netskopeとつながる

Subscribe to the Netskope Blog

Sign up to receive a roundup of the latest Netskope content delivered directly in your inbox every month.